
CS 4530: Fundamentals of Software Engineering

Module 06: Concurrency Patterns in Typescript

Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

1

© 2023, 2024 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson
• At the end of this lesson, you should be prepared

to:
• Explain the difference between JS run-to-

completion semantics and interrupt-based
semantics.

• Given a simple program using async/await, work
out the order in which the statements in the
program will run.

• Write simple programs that create and manage
promises using async/await

• Write simple programs to mask latency with
concurrency by using non-blocking IO and
Promise.all in TypeScript.

2

Our goal is to mask latency with
concurrency
• Consider: a 1Ghz CPU executes an instruction every 1 ns
• Almost anything else takes approximately forever

3

CPU 1

thread0() Main
Memory

CPU 1 Cache
100ns7ns SSD

150,000ns (just to read 4KB)

Magnetic HD

10,000,000ns (just to seek!)

Remote Computer
(Internet in between)

~100,000,000ns
Earth to moon: ~16,000,000 inches

• Utilize this “wasted” time by
doing something else

• Processing data
• Communicating with remote hosts
• Timers that countdown while our app is

running
• Echoing user input

4

We achieve this goal using two
techniques:

1. cooperative multiprocessing

2. non-blocking IO

Most OS's use pre-emptive multiprocessing
• OS manages multiprocessing with multiple threads of

execution
• Processes may be interrupted at unpredictable times
• Inter-process communication by shared memory
• Data races abound
• Really, really hard to get right: need critical sections,

semaphores, monitors (all that stuff you learned about in
op. sys.)

Javascript/Typescript uses cooperative
multiprocessing
• Typescript maintains a pool of processes, called

promises.
• A promise always executes until it hits an await

or it reaches its end.
• This is called "run-to-completion semantics"
• A promise can create other promises to be

added to the pool.
• Promises interact mostly by passing values to

one another; data races are minimized.

A promise can be in one of exactly 4 states
• Executing

• there is only one of these; we call it the "current
promise" or the "current computation", sometimes
the "active promise”

• Pending (“waiting”) for some event
• Either for some other promise to resolve, or for the

runtime to select it for execution.
• Fulfilled (“resolved”)

• The asynchronous operation has completed, and the
Promise's result is a value .

• Rejected
• The asynchronous operation failed, and the Promise's

result is an error.
7

Computations always run until they are
completed.
• Along the way, it may create promises that can

be run anytime after the current computation is
completed (i.e. they are in the "ready" state)

• It may also create promises that are in the
"waiting" state -- waiting for some event or
other promises to be completed, at which time
they become "ready".

• When the current computation is completed
(that is, it reaches an await or its end), the
operating system (e.g. node.js) chooses some
"ready" process to become the next current
computation.

Where do promises come from?

9

• Typescript has primitives that create
promises.

• But you will never do this
• Some typescript libraries have API

procedures that return promises
• this is the usual way you'll get

promises.
• Most of the time, you'll be building

new promises out of the ones that
are given to you.

• This is what async/await does…

async/await creates a pair of promises.

1. When called, this procedure executes normally until it hits
the await, printing out "doThisNow" and binding p1 to the
value of somePromise().

2. When it hits the await, it creates a new promise, containing
everything after the await, and marks that promise as
waiting for p1.

3. It puts p1 (now with the yellow promise attached) into the
promise pool. The yellow code is blocked.

4. The call to example(n) returns with the value of p1 (a
promise)

5. The caller of example(n) then continues its execution 10

export async function example (n:number) {
console.log("doThisNow", n);
const p1 = somePromise();
const response = await p1
console.log("doThisLater", n);

}

p1: ready

console.log("after
await")

waiting

src/async-await/asyncExample.ts

A bigger picture

11

p0:
active

example(1);

more code…

p1: ready

console.log("after
await")

waiting

p0:
active

more code…

"more code" is executed next (“Run to Completion”);
meanwhile, p1 is waiting to be selected.

Simplest example

$ npx ts-node example1.ts
calling example(1)
doThisNow 1
main finished

doThisLater 1
12

export async function
example(n:number) {

console.log("doThisNow", n);
const p1 = somePromise();
const response = await p1
console.log("doThisLater", n);

}

src/async-await/example1.ts

import { example } from "./asyncExample"

function main () {
console.log("calling example(1)")
example(1)
console.log("main finished\n")

}

main()

You can start multiple
threads

13

import { example }
from "./asyncExample";

async function main() {
example(1)
example(2)
example(3)
console.log("main finished\n")

}

main()

$ npx ts-node example2.ts
doThisNow 1
doThisNow 2
doThisNow 3
main finished

doThisLater 1
doThisLater 2
doThisLater 3

src/async-await/example2.ts

Use await to make promises
execute sequentially

14

import { example }
from "./asyncExample";

async function main() {
await example(1)
await example(2)
await example(3)
console.log("main finished\n")

}

main()

$ npx ts-node example3.ts
doThisNow 1
doThisLater 1
doThisNow 2
doThisLater 2
doThisNow 3
doThisLater 3
main finished

src/async-await/example3.ts

Use Promise.all to synchronize on
the completion of several promises

15

async function forkJoin() {
console.log("forkJoin started")
const promises
= [example(1), example(2), example(3)]
console.log(promises)
await Promise.all(promises)
console.log("forkJoin finished\n")

}

async function main() {
forkJoin()
console.log("main finished\n")

}

$ npx ts-node example4.ts
forkJoin started
doThisNow 1
doThisNow 2
doThisNow 3
[Promise { <pending> }, Promise {
<pending> }, Promise { <pending> }]
main finished

doThisLater 1
doThisLater 2
doThisLater 3
forkJoin finished

src/async-await/example4.ts

How does JS Engine make this happen?

16

• One Event Loop
means that we
have single thread
of execution

• WebAPI are used
for asynchronous
tasks

• Queues are used
for “await”-ing
tasks

17

We achieve this goal using two
techniques:

1. cooperative multiprocessing

2. non-blocking IO

But where does the non-blocking IO
come from?

JS/TS has some primitives for starting a
non-blocking computation
• These are things like http requests, I/O operations, or timers.
• We often use WebAPIs for these which allows us to run them on

browser asynchronously
• Each of these returns a promise that you can await. The promise

runs while it is pending, and produces the response from the http
request, or the contents of the file, etc.

• You will hardly ever call one of these primitives yourself; usually they
are wrapped in a convenient procedure, e.g., we write:

axios.get('https://rest-example.covey.town’)
to make an http request, or we write:

fs.readFile(filename)
to read the contents of a file.

18

Pattern for starting a concurrent
computation

• The http request is sent immediately.
• A promise is created to run the more code after the http call returns

(i.e., the code after “awaits” is blocked)
• Control returns to the caller of makeRequest.
• The promises containing the green and yellow code are left in the

promise pool. 19

async function makeRequest(requestNumber:number) {
// some code (to be executed now)
const response =
await axios.get('https://rest-example.covey.town')

// more code (to be executed after the .get() returns.
}

The pattern in action

20

export async function makeRequest(requestNumber:number) {
console.log(`makeRequest is about to start request ${requestNumber}`);
const response = await axios.get('https://rest-example.covey.town');
console.log(`makeRequest resumes request ${requestNumber}`)
console.log(`makeRequest reports that for request '${requestNumber}', server replied: `,

response.data);
}

console.log("main thread is about to call makeRequest");
makeRequest(1000);
console.log("main thread continues after makeRequest returns");
console.log("end of main thread")

$ npx ts-node example1
main thread is about to call makeRequest
makeRequest is about to start request 1000
main thread continues after makeRequest returns
end of main thread
makeRequest resumes request 1000
makeRequest reports that for request '1000', server replied: This is GET number 200 on the current
server

1. Axios.get starts the http
request in the background, and

2. Creates a promise to do the code
after the await.

3. The call to makeRequest
returns.

4. The main thread finishes.
5. The computation resumes
the promise

src/requests/example1.ts

21

Running several
requests
concurrently

import makeRequest from './makeRequest';
import timeIt from './timeIt'

async function makeThreeSimpleRequests() {
makeRequest(1);
makeRequest(2);
makeRequest(3);
console.log("Three requests made; main thread finishes")

}

timeIt("main thread", makeThreeSimpleRequests)

$ npx ts-node example2
makeRequest is about to start request 1
makeRequest is about to start request 2
makeRequest is about to start request 3
Three requests made; main thread finishes
Elapsed time for main thread: 41.064 milliseconds
makeRequest reports that for request '3', server replied: This is GET number 223
on the current server
makeRequest reports that for request '1', server replied: This is GET number 224
on the current server
makeRequest reports that for request '2', server replied: This is GET number 225
on the current server

Requests are made in
order

But the response for
request 3 arrived at
the server before
request 1.

src/requests/example2.ts

22

await
makes your
code more
sequential

import makeRequest from './makeRequest';
import timeIt from './timeIt'

async function makeThreeSerialRequests() {
await makeRequest(1);
await makeRequest(2);
await makeRequest(3);
console.log("Three requests made; main thread finishes")

}

timeIt("main thread", makeThreeSerialRequests)

$ npx ts-node example3
makeRequest is about to start request 1
makeRequest reports that for request '1', server replied: This is GET
number 232 on the current server
makeRequest is about to start request 2
makeRequest reports that for request '2', server replied: This is GET
number 233 on the current server
makeRequest is about to start request 3
makeRequest reports that for request '3', server replied: This is GET
number 234 on the current server
Three requests made; main thread finishes
Elapsed time for main thread: 800.270 milliseconds

Second request doesn’t start
until to first request returns

src/requests/example3.ts

Promise.all waits for all of the
promises in a list to finish

23

async function makeThreeConcurrentRequests() {
const p1 : Promise<void> = makeRequest(1);
const p2 : Promise<void> = makeRequest(2);
const p3 : Promise<void> = makeRequest(3);
const thePromises = [p1,p2,p3]
await Promise.all(thePromises)
console.log(`main thread reports: thePromises = [${thePromises}]`)
console.log(`main thread finishes`)

}

timeIt("main thread", makeThreeConcurrentRequests)

$ npx ts-node example5
makeRequest is about to start request 1
makeRequest is about to start request 2
makeRequest is about to start request 3
makeRequest reports that for request '2', server replied: This is GET number 259 on the current server
makeRequest reports that for request '1', server replied: This is GET number 260 on the current server
makeRequest reports that for request '3', server replied: This is GET number 261 on the current server
main thread reports: thePromises = [[object Promise],[object Promise],[object Promise]]
main thread finishes
Elapsed time for main thread: 256.518 milliseconds

Main thread doesn’t resume until
ALL of the promises are satisfied

src/requests/example4.ts

async function makeThreeConcurrentRequests():
Promise<void> {

await Promise.all([
makeOneGetRequest(1),
makeOneGetRequest(2),
makeOneGetRequest(3)

])
console.log('Heard back from all of the requests')

}

Visualizing Promise.all (1)

async function makeThreeSerialRequests():
Promise<void> {

await makeOneGetRequest(1);
await makeOneGetRequest(2);
await makeOneGetRequest(3);
console.log('Heard back from all of the

requests')
}

Sequential version: ~206 msec Concurrent version: ~80 msec

“Don’t make another request
until you got the last response

back”

“Make all of the requests now,
then wait for all of the

responses”

Visualizing Promise.all (2)

Time Time

makeOneGetRequest #1

wait for response rs

makeOneGetRequest #3

wait for response rs

makeOneGetRequest #2

wait for response rs

makeOneGetRequest #1

wait for response rs

makeOneGetRequest #3

wait for response rs

makeOneGetRequest #2

wait for response rs

r

s send

receive

async function makeThreeConcurrentRequests():
Promise<void> {

await Promise.all([
makeOneGetRequest(1),
makeOneGetRequest(2),
makeOneGetRequest(3)

])
console.log('Heard back from all of the requests')

}

async function makeThreeSerialRequests():
Promise<void> {

await makeOneGetRequest(1);
await makeOneGetRequest(2);
await makeOneGetRequest(3);
console.log('Heard back from all of the

requests')
}

Sequential version: ~206 msec Concurrent version: ~80 msec

Let’s put it all together

26

• JS/TS has single event loop
• We outsource most of the

non-blocking IO work (to
WebAPIs) for asynchronous
work

• Upon completion, they are
placed in queues (Microtask
queue has priority over
Macrotask queue)

• Event loops picks them up
from queue when call stack
is empty!

Here is a quick demo for you

27

Courtesy of https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif

https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif

An Example Task Using the
Transcript Server
• Given an array of StudentIDs:

• Request each student’s transcript, and save it to disk so that
we have a copy, and calculate its size

• Once all of the pages are downloaded and saved, print out the
total size of all of the files that were saved

Generating a promise for each
student

29

async function asyncGetStudentData(studentID: number) {
const returnValue =
await axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)

return returnValue
}

async function asyncProcessStudent(studentID: number) : Promise<number> {
// wait to get the student data
const response = await asyncGetStudentData(studentID)
// asynchronously write the file
await fsPromises.writeFile(

dataFileName(studentID),
JSON.stringify(response.data))

// last, extract its size
const stats = await fsPromises.stat(dataFileName(studentID))
const size : number = stats.size
return size

}

Calling await also gives other
processes a chance to run.

src/transcripts/simple.ts

Running the student processes
concurrently

30

async function runClientAsync(studentIDs:number[]) {
console.log(`Generating Promises for ${studentIDs}`);
const studentPromises =
studentIDs.map(studentID => asyncProcessStudent(studentID)) ;

console.log('Promises Created!');
console.log('Satisfying Promises Concurrently')
const sizes = await Promise.all(studentPromises);
console.log(sizes)
const totalSize = sum(sizes)
console.log(`Finished calculating size: ${totalSize}`);
console.log('Done');

}
Map-promises pattern: take a list of
elements and generate a list of
promises, one per element

src/transcripts/simple.ts

Output

31

$ npx ts-node simple.ts
Generating Promises for 411,412,423
Promises Created!
Satisfying Promises Concurrently
[151, 92, 145]
Finished calculating size: 388
Done

runClientAsync([411,412,423])

But what if there’s an error?

32

runClientAsync([411,412,87065,423,23044])

$ npx ts-node transcripts/simple.ts
Generating Promises for 411,412,87065,423,23044
Promises Created!
Satisfying Promises Concurrently

<blah blah blah>\node_modules\axios\lib\core\createError.js:16
var error = new Error(message);

^
Error: Request failed with status code 404

Oops!

Need to catch the error

33

type StudentData = {isOK: boolean, id: number, payload?: any }

/** asynchronously retrieves student data, */
async function asyncGetStudentData(studentID: number): Promise<StudentData> {

try {
const returnValue =
await axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)

return { isOK: true, id: studentID, payload: returnValue }
} catch (e) {

return { isOK: false, id: studentID }
}

}
Catch the error and transmit it in a
form the rest of the caller can
handle.

src/transcripts/handle-errors.ts

And recover from the error…

34

async function asyncProcessStudent(studentID: number): Promise<number> {
// wait to get the student data
const response = await asyncGetStudentData(studentID)
if (!(response.isOK)) {

console.error(`bad student ID ${studentID}`)
return 0

} else {
await fsPromises.writeFile(

dataFileName(studentID),
JSON.stringify(response.payload.data))

// last, extract its size
const stats = await fsPromises.stat(dataFileName(studentID))
const size: number = stats.size
return size

}
}

Design decision: if we have a bad
student ID, we’ll print out an error
message, and count that as 0
towards the total.

src/transcripts/handle-errors.ts

New output

35

runClientAsync([411,32789,412,423,10202040])

$ npx ts-node transcripts/handle-errors.ts
Generating Promises for 411,32789,412,423,10202040
Promises Created!
Wait for all promises to be satisfied
bad student ID 32789
bad student ID 10202040
[151, 0, 92, 145, 0]
Finished calculating size: 388
Done

Pattern for testing an async function

36

import axios from 'axios'

async function echo(str: string) : Promise<string> {
const res =

await axios.get(`https://httpbin.org/get?answer=${str}`)
return res.data.args.answer

}

test('request should return its argument', async () => {
expect.assertions(1)
await expect(echo("33")).resolves.toEqual("33")

})

src/jest/jest-example.test.ts

General Rules for Writing Asynchronous
Code
• You can’t return a value from a promise to an ordinary

procedure.
• You can only send the value to another promise that is

awaiting it.
• Call async procedures only from other async functions or from

the top level.
• Break up any long-running computation into async/await

segments so other processes will have a chance to run.
• Leverage concurrency when possible

• Use promise.all if you need to wait for multiple promises to
return.

• Check for errors with try/catch

Optional Material

38

This is not Java!
• In Java, you could get an

interrupt between
statement 2 and
statement 3.

• In TS/JS statement 3 is
guaranteed to be
executed *immediately*
after statement 2!

• No interrupt is possible.

39

let x : number = 10

async function asyncDouble() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(1);
x = x * 2 // statement 1

}

async function asyncIncrementTwice() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(2);
x = x + 1; // statement 2
// nothing can happen between these two statements!!
x = x + 1; // statement 3

}

async function run() {
await Promise.all([asyncDouble(), asyncIncrementTwice()])
console.log(x)

}

src/data-races/dataRace.ts

But you can still have a data race

40

let x : number = 10

async function asyncDouble() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(1);
x = x * 2 // statement 1

}

async function asyncIncrementTwice() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(2);
x = x + 1; // statement 2
x = x + 1; // statement 3

}

async function run() {
await Promise.all([asyncDouble(), asyncIncrementTwice()])
console.log(x)

}

src/data-races/dataRace.ts

Async/await code is compiled into
promise/then code

async function
makeThreeSerialRequests(){
1. console.log('Making first
request’);
2. await makeOneGetRequest();
3. console.log('Making second
request’);
4. await makeOneGetRequest();
5. console.log('Making third
request’);
6. await makeOneGetRequest();
7. console.log('All done!');
}
makeThreeSerialRequests();

console.log('Making first request');
makeOneGetRequest().then(() =>{
console.log('Making second request');
return makeOneGetRequest();

}).then(() => {
console.log('Making third request');
return makeOneGetRequest();

}).then(()=>{
console.log('All done!');

});

Promises Enforce Ordering Through “Then”
• axios.get returns a

promise.

• p.then mutates that
promise so that the then
block is run immediately
after the original promise
returns.

• The resulting promise
isn’t completed until the
then block finishes.

• You can chain .then’s, to
get things that look like
p.then().then().then()

1. console.log('Making requests');
2. axios.get('https://rest-example.covey.town/')
 .then((response) =>{

 console.log('Heard back from server');
 console.log(response.data);

});
3. axios.get('https://www.google.com/')
 .then((response) =>{
 console.log('Heard back from Google');
 });
4. axios.get('https://www.facebook.com/')
 .then((response) =>{
 console.log('Heard back from Facebook');
 });
5. console.log('Requests sent!');

Async/Await Programming Activity
• We have an activity that extends the transcript

example we showed in this module.
• Details are linked from the Module 6 web page.

Review
• You should now be prepared to:

• Explain the difference between JS run-to-
completion semantics and interrupt-based
semantics.

• Given a simple program using async/await, work
out the order in which the statements in the
program will run.

• Write simple programs that create and manage
promises using async/await

• Write simple programs to mask latency with
concurrency by using non-blocking IO and
Promise.all in TypeScript.

44

	CS 4530: Fundamentals of Software Engineering��Module 06: Concurrency Patterns in Typescript
	Learning Goals for this Lesson
	Our goal is to mask latency with concurrency
	We achieve this goal using two techniques:� �1. cooperative multiprocessing� � �2. non-blocking IO
	Most OS's use pre-emptive multiprocessing
	Javascript/Typescript uses cooperative multiprocessing
	A promise can be in one of exactly 4 states
	Computations always run until they are completed.
	Where do promises come from?
	async/await creates a pair of promises.
	A bigger picture
	Simplest example
	You can start multiple threads
	Use await to make promises execute sequentially
	Use Promise.all to synchronize on the completion of several promises
	How does JS Engine make this happen?
	We achieve this goal using two techniques:� �1. cooperative multiprocessing � �2. non-blocking IO
	JS/TS has some primitives for starting a non-blocking computation
	Pattern for starting a concurrent computation
	The pattern in action
	Slide Number 21
	�await makes your code more sequential
	Promise.all waits for all of the promises in a list to finish
	Visualizing Promise.all (1)
	Visualizing Promise.all (2)
	Let’s put it all together
	Here is a quick demo for you
	An Example Task Using the Transcript Server
	Generating a promise for each student
	Running the student processes concurrently
	Output
	But what if there’s an error?
	Need to catch the error
	And recover from the error…
	New output
	Pattern for testing an async function
	General Rules for Writing Asynchronous Code
	Optional Material
	This is not Java!
	But you can still have a data race
	Async/await code is compiled into promise/then code
	Promises Enforce Ordering Through “Then”
	Async/Await Programming Activity
	Review

